
 
 

Privacy-enhanced Intelligent Automatic Form Filling  
for Context-aware Services on Mobile Devices  

 
Enrico Rukzio, Albrecht Schmidt, Heinrich Hußmann 

Ludwig-Maximilians-University Munich 
80333 Munich, Germany 

{enrico.rukzio, albrecht.schmidt, heinrich.hussmann}@ifi.lmu.de 
 
 

Abstract 
In this paper we describe our approach to intelligent 
automatic form filling in the context of mobile services 
based on user data. In a small study we show that manual 
form filling is slow and perceived a stressful task. And 
hence it is not surprising that most current mobile 
services provide primary information, more complex 
interactions such as ordering a specific product are often 
very complicate and time consuming tasks or are even not 
provided. In our approach the individual forms elements 
are preset based on the content and context of the form, 
existing rules and the user’s preferences. 
Our work is grounded in an analysis of requirements. We 
investigated popular current WAP based mobile services 
and their characteristics. Through an analysis of 
conventional HTML based services we concluded which 
data a user has to type in when filling out a form. 
Furthermore we analyzed the behavior of people during 
filling out forms. Based on these observations and 
additional interviews, we present an overall architecture. 
A prototype, taking into account these findings is outlined 
at the end of the paper. 

1. Introduction 
In the late nineties during the omnipresent internet 

hype also the phrase Mobile Commerce and the 
corresponding technologies for mobile services such as 
the Wireless Application Protocol (WAP), Wireless 
Markup Language (WML), compact HTML (cHTML) 
and i-mode appeared. Until now these services are not 
widely accepted in Europe. 

Many people have devices and service contracts so 
that they could use mobile services but they still do not 
use these services. When talking to people several general 
reasons often are given why these mobile services are not 
used e.g. 
• users see no need for such services 
• it often does not work at all or it is not clear whether or 

not it will work in the given context 
• it is too expensive for the added value provided 

• it is too complicate to use and setup 
• it is complicate to input text with T9 or a stylus 

In our research we wanted to find out more details 
about the last mentioned problem and how to build a 
system to overcome this problem. In this paper we outline 
a system through which the user can be unburdened from 
the input of text through an intelligent automatic form 
filling process for mobile services. Our work is also 
concerned with a further requirement: ensuring privacy. 
Particularly for e-commerce applications based on 
transactions such as ordering a product or reserve a 
special service this is essential for many customers. 

This work was performed in the context of the EU-
project Simplicity [1] and the depicted architecture and 
the prototype are part of a current implementation process 
which leads to a bigger prototype that represents the 
whole project. The key concept of this EU-project is the 
Simplicity Device which might be an enhanced SIM card 
that is worn by the user which stores the user data and 
preferences. Based on this data, terminals, services and 
networks will be adapted through the Simplicity 
framework.  

The paper is organized as follows. The next section 
relates our work to existing approaches. Section 3 
analysis existing mobile services and conventional web 
based services. Furthermore we describe an initial user 
test which investigates the input of text into forms with a 
stylus based mobile device. In Section 4 we present a 
generic architecture for our concept. Afterwards we 
depict a prototype which is currently under development. 
The paper is completed by a discussion and outline of our 
further work. 

2. Related Work 
In this section we analyze in the context of mobile 

devices and services, the state of the art of text input, 
automatic form filling, adaptive web services and the 
usage of artificial intelligence in rule- and policy-based 
systems that support these adaptations. 

There are big differences between the text input on a 
desktop PC and on a mobile device. Basically we can 



distinguish between three different text entry techniques 
for mobile devices: key-based, stylus-based and 
predictive input techniques [2]. There are big differences 
regarding the text entry speed which is normally 
measured in words per minute (wpm). A skilled touch 
typist using a conventional keyboard can enter an average 
of 72 wpm [3]. The text entry on a mobile device is 
slower as you can see in the following Table 1: 

Name WPM User skills Ref. 
PDA 
Graffiti  21,5 average user [3] 
QWERTY keyboard 20,2 novice user [3] 
Mobile Phone 
T9  41-46  expert user [4] 
Multi-press method  25-27  expert user [4] 

Table 1. Text entry speed on mobile devices 

Graffiti which is popular in PALM-OS - based systems 
is a stylus based input technology that is based on 
handwritten letters. In mobile phones every button also 
represents three letters. The T9 system uses a predictive 
algorithm which is based on a dictionary where words 
have a probability associated. Thus in many cases the user 
has only to select the buttons which represents among 
others also the intended letter to write a word. When 
using the traditional multi-press method the user has to 
select the intended letter through multiple pressing a key 
until reaching the desired one. 

As one can see in Table 1 the T9 system is the fastest 
approach that is based on a predictive algorithm which 
takes the frequency or probability of specific words 
stored in a corresponding database into account. 
Unfortunately words that are used for format filling like 
name, address or e-mail often are not included in these 
databases. Because of this T9 is not very effective for 
form filling and often the traditional multi-press method 
on mobile phones is used that reaches 25-27 wpm when 
used by experts. Besides this it has to be taken into 
account that most users are not experts in T9 or Graffiti. 

When using commercial websites the user very often 
has to input data in different kinds of forms. There are 
various proposals and concepts how this process can be 
automated. Chusho et al. [5] presented a system where an 
agent supports the automatic filling of forms in web 
applications. Therefore a corresponding architecture that 
is similar to modern AI architectures was developed that 
includes an inference engine, a learning facility and a 
knowledgebase. Furthermore there exists a W3C working 
draft Client Side Automated Form Entry [6] which 
includes among others an ontology for the description of 
identity, contact, postal, billing and organisational 
information. Barton et al. presented their XForms 
approach [7] that supports adaptive services through 
clients that fill forms with sensor data. Furthermore there 

are already some existing commercial applications like 
RoboForm [8] or iOpus Internet Macros [9] available that 
have functions for automatic form filling. In contrast to 
these approaches we concentrate on mobile devices and 
mobile services. 

The exploration and development of context-aware 
services is currently a field that is considered by a lot of 
researchers and scientific projects. The basis for this is 
context information [10] like user data, device, location, 
surrounding devices, profiles, time, activity etc. This 
context information is used to adapt the services and 
contents. In the application area of this paper particularly 
personalized web applications for mobile devices have to 
be concerned that adapt web applications according the 
user and according the used device [11, 12, 13, 14]. 

The usage of rule- or policy-based systems that are 
based on concepts of the field of artificial intelligence are 
one standard approach when designing systems for 
context-aware services. Suryanarayana and Hjelm 
presented an architecture [15] that takes different profiles 
such as user profile, application profile and transport 
profile into account. Regarding the processing of this data 
they discuss possibilities that are based on rules 
languages such as RuleML and policies. They concern 
also the usage of XSL Transformations (XSLT) to adapt 
services according the context. A platform supporting 
coordinated adaptation in mobile systems that is based on 
policies is presented in [16] and [17]. They distinguish 
strictly between the monitored context information, the 
policies and the adaptation mechanisms. It is possible to 
use policies for different adaptations and the adaptation 
mechanisms are independent from the policies. Through 
this the mobile services can be adapted in a system-wide 
manner. Rei, a policy language for pervasive computing 
application was presented by Kagal et al. [18]. It is 
possible to express rules for rights, obligations, 
dispensations, and prohibitions. We restrict our approach 
to the domain of form filling for mobile services, which 
reduces the complexity to a great extend.  

3. Analysis 
After looking at related work this chapter analyses 

mobile services that are actually used and discussed 
actual problems regarding their usage. Afterwards we 
analyzed 20 different existing traditional web services 
and concentrated particularly on data users have to fill in 
for a transaction like e.g. order a book, rent a car or 
reserve a hotel room. We finish our analysis with an 
initial user test where we tested our concept through a 
mock-up.  

3.1 Services  
Currently the most services provided and used are 

based on WAP (Wireless Application Protocol) [19], 



cHTML, HTML and XHTML. The following Table 2 
shows the top 5 services of mobile services from three 
different German mobile network operators. 

 T-Mobile 
[20] 

O2 Germany 
[21] 

E-Plus 
Germany [22] 

1. Ring tones 1. Live chat 1. Ring tones 
2. Download 
games 

2. eBay 2. Playboy 

3. Chat 3. O2 E-Mail 3. Sport news 
4. Soccer 4. O2 Ring 

tones 
4. Poptone 

Top 5 
Services 

5. MMS-
services 

5. O2 Games 5. eBay 

Format WAP/WML WAP/WML cHTML,  
i-mode 

Data 
from 

28/06/2004 28/06/2004 01/07/2004 

Table 2. Top 5 services of three German mobile operators 

As depicted in Table 2 mobile entertainment services 
like games, chat and ring tones are mostly used. 
Furthermore the mobile network operators provide often 
specific content that is accessed by a pre-configured 
mobile phone which has a corresponding soft-link to the 
corresponding portal of the mobile network operator.  

We have recognized that a lot of commercial websites 
do not provide forms because it is so complicate to fill 
them with the limited text input capabilities of mobile 
devices. For instance the WAP version of a German 
online book shop Booxtra [23] has only these three 
possibilities to order a book after it was selected by the 
user: call Booxtra with the phone, sending of a 
corresponding email to my personal email account or 
using an existing Booxtra account. It’s not possible to 
order a book online without having an existing Booxtra 
account. In the WAP version of a German mobile phone 
distributor [24] the user has to input his phone number 
after finding the desired mobile phone, afterwards the 
distributor calls the potential customer. 

Furthermore our survey showed that most mobile 
services provide information only that is accessible 
through simply navigating hyperlinks. More complex 
interactions that require text input or form filling are 
seldom found.  

3.2 Needed Personal Data  
Due to this fact that there are very few mobile services 
that ask for user information we looked at web pages 
designed for desktop systems to identify the data that is 
required for potential services. We analyzed 20 different 
existing commercial HTML services on the internet and 

looked at the data that the user has to fill in when he/she 
wants to order or reserve something. Based on this 
analysis we concluded that it is possible to implement 
such a system because most of these forms where quite 
similar. We recognized that most of the services asked for 
a basic set of very similar data. Furthermore we found out 
that there are fixed groups of labels on the fields and of 
variable names for that field. From this we concluded that 
the usage of synonym lists for attribute names is essential 
for the development of our system. Through this input 
fields that are related to an element of our context model 
could be addressed in a uniform manner.  
In Table 3 specific sets of variable names are shown. 
When building a system for form filling this has to be 
taken into account.  

 Amazon.com Sixt.com Hilton.com 
Address 
First Name name   firstName 
Last Name name  nam1 lastName 
Adress1 adress1  adress1 
Adress2 adress2  adress2 
E-Mail-
Address 

email emai email 

City city  city 
State/Provin
ce/Region 

state  state || 
otherstate 

ZIP/Postal 
Code 

zip  postalCode 

Country country name  country 
Phone 
Number 

voice tel phoneNumber 

Payment 
Payment 
Method 

paymentMethod zah  

Credit Card newCreditCardIssuer   
Credit Card 
No. 

newCreditCardNumber ccnr CCNumber 

Expiration 
Date 

newCreditCardMonth, 
newCreditCardYear 

 CCExpMonth 
,CCExpYear 

Cardholder’s 
name 

newCreditCardName   

Table 3. Variable names in three different forms 

As one can see at the variable names at Amazon.com that 
begin with new these names has also to be concerned. 
This indicates that a system will require sub-string 
analysis of variable names. At Sixt.com system specific 
attributes and uncommon abbreviation are used. At 
Hilton.com an example of predefined values and 
alternatives is given. The variable state is represented by 



a selection list and alternatively it is also possible to use a 
text input field (otherstate).  

3.3 Initial User Test 
In an initial user test we studied the behaviour and 

experiences of the potential users using a web service on 
a PDA. We used a P800 smartphone from Sony Ericsson 
which accessed the internet via a Bluetooth connection. 
We have built a mock-up HTML-based hotel reservation 
service that was visualized by “Opera for 
Smartphone/PDA” on the P800. We provided two 
different versions of the reservation service. In the first 
version the user has to fill out every form field by herself 
whereby in the other version the fields where already 
filled out with user data. In the second version we 
integrated two errors (wrong street name and credit card) 
that the tester has to identify and to correct. This mock-up 
can be found under [25] and can be used with any web 
browser. 

 

Figure 1. Screenshot of our mock-up web application 
and activated virtual keyboard  

In booth versions the first name, last name, address, 
city, ZIP, phone number, e-mail address, method of 

payment, card number and expiration date have to be 
filled in, accepted or corrected.  

We tested this with 8 users (colleagues from our 
department) whereby all where familiar with web forms 
and the concept of mobile services but used a P800 for 
the first time. As you can see in the Picture 1 the virtual 
keyboard was used to fill out the forms. 

We took into consideration the usage of a mobile 
phone which supports the T9 system. We rejected this 
possibility because the potential testers were mostly 
familiar with keyboards but their experience with T9 
differed greatly. It would be an interesting test to evaluate 
the speed of predictive systems like T9 when filling out 
forms because there are special requirements such as 
using special signs (e.g. +, @, -,.), input of numbers for 
ZIPs or credit card numbers and mixed input of text, 
special signs and numbers such as email addresses. But 
this was not the main focus of our investigation. 

We show in the following Table 4 the durations for the 
filling of the empty forms and the completion time for 
pre-filled forms. Furthermore we also show the average 
times the testers needed in the first, the second and the 
third run. 

 Empty forms Pre-filled forms 
1. run 240 seconds 60 seconds 
2. run 170 seconds 37 seconds 
3. run 115 seconds 33 seconds 

Table 4. Average input times over all users, user were 
ask to perform several runs 

The most important result was that the testers need 
about four times longer to fill the empty form compared 
to the pre-filled form which needed corrections. 
Furthermore we recognized that the testers learned quit 
fast to use the virtual keyboard and the styles. But 
anyway they factor four exists also after three runs. From 
this we conclude that a form filling application would be 
extremely helpful and would if intensively used, support 
the further development of mobile services. 

Beside this numeric results we recognized that most 
users where really frustrated when they used the stylus of 
the smartphone when they inserted text. Therefore we 
concluded it is very important that the user has to type in 
as few as possible.  

At the beginning of every test we explained the tester 
the intension of the different forms. We explained them 
that in the second version there is an intelligent assistant 
which tries to fill out all fields based on the available user 
data. After this explanation many testers said they do not 
want to give their personal data away, e.g. as in the 
Microsoft .NET Passport [26]. From this we concluded 
the requirement that all data has to be stored on a physical 
device that is owned by the user himself. This supports 
the concept of the Simplicity Device as the key concept of 



the Simplicity project where the user carries personal data 
stored on a private physical device. Furthermore the users 
liked being in control and want to see what data is filled 
in the different fields and so he/she has the possibility to 
delete or change the automatically inserted data. This 
approach provides the user an overview where and when 
data is transmitted and what data is given to which 
service.  

To ease analysing the user tests we filmed the 
participants when using the mock-up web application 
with a video camera. Selected scenes can be found under 
[27]. 

4. The Overall Architecture 
In this section we present an overall architecture that 

supports automatic form filling for mobile services that 
for instance are realized with WAP, X(HTML) or 
cHTML. This agent-based architecture is build on the 
evolving Simplicity framework, our analysis presented in 
Section 3 and on the work of Chusho et al. [5] that we 
adapted for mobile devices. 

Figure 2 depicts the elementary parts of our overall 
architecture. The mobile device includes the four 
components proxy, web browser, personal assistant and 
user data. After the user requests a specific website which 
includes a form, it is transmitted from the server to the 
mobile device. To get access to the transmitted HTML-
data a proxy is integrated in the mobile device. Before a 
website is transmitted to the web browser and before a 
website is transmitted to the server, the proxy has to be 
passed. The proxy provides an interface to access the 
actual web page. Such a proxy has the advantage that 
every existing web browser can be used by our system 
because we do not have to access the web browser 
through a special interface. The web browser interprets 
the different mobile services and shows them to the user. 

 The personal assistant uses the interface of the proxy 
to get the access to the current website. Based on this 
information and the user data the personal assistant 
performs the automatic form filling. 

Mobile Device

User Data

Mobile Service A
(WAP-based 

forms)

Mobile Service B
((X)HTML-based 

forms)

Mobile Service C
(cHTML-based 

forms)

Address:
First Name, Last Name, Address, City/
ZIP, E-Mail, Phone

Bank account:
Credit card, Number, Expiration

Web Browser

Personal Assistant
User

Inference
Engine

Learning 
Facility

Rule base

Proxy

 
Figure 2. Overall architecture 

4.1 Available Data 

There are two different types of data which are the 
basis for the decision that has to be made by the personal 
assistant. 

One type is data related to the user, such as address, 
bank account or preferences (e.g. non-smoker, “I like 
window seats”, etc.). This data can be initially defined by 
the user or could be learned through the observation of 
the user interaction. For the context model existing 
ontologies and infrastructures such as the 3GPP Generic 
User Profile [28] and the W3C working draft Client Side 
Automated Form Entry [6] are used.  

The other type is data that is already existing in the 
web form. This includes a lot of information that is taken 
into account by the personal assistant. Examples are 
caption of the field (e.g. Name), definition of the field, 
the context of the field (e.g. fields before and afterwards, 
title of and heading in webpage), variable names, and 
context of the user (e.g. he/she is in an airport). By the 
field definition (e.g. <input name="Name" type="text" 
size="20" maxlength="30">) it is possible to get a lot of 
information about the desired input such as attribute name 



(Name), data type (text) and length (between 20 and 30 
characters). But there is of course ambiguity as the 
services developers choose the names of attributes. This 
depends on the methodology of the developer or the 
conventions of the used web authoring software. This 
problem might become less important through the further 
usage of XML or Resource Description Framework 
(RDF) in the development of mobile services. 

4.2 Personal Assistant 
The personal assistant is an active entity on the mobile 

device which works in the background and which is not 
directly visible to the user. After a new website of a 
mobile service (e.g. WAP-, (X)HTML- or cHTML-side) 
is requested the personal assistant analyses this and tries 
to fill out the fields of the included forms. 

The personal assistant is a rule based agent whereby 
the inference engine that uses a rule base is responsible 
for the decisions which field is filled out with which 
content. Furthermore there is a learning facility included 
that enhances the rule base and the synonym lists. 

Based on the approach from Chusho et al. [5] we will 
also use sets of synonyms that are related to our own 
context model and rules that concern the context of a 
field. Our ontology for user data includes for instance the 
variable LastName. It is possible to predefine a set of 
synonyms that can be used also as alternative variable 
names such as FamilyName, surename or name2. As 
rules we use IF-THEN statements which have the 
following structure: IF ‘constraints’ THEN ‘insert value’. 
In the constraint statement we address the input field 
trough the synonym set rather then a concrete attribute 
name. The different attributes that can be considered in 
the constraint statement have been already described in 
subsection 4.1 Available Data. 

The learning facility is able to extend the existing 
synonyms and to generate new rules. If there is e.g. a 
form including a field with variable name name_2 this 
might be not filled out by the personal assistant because 
this one is not part of the existing synonyms. So the user 
has to fill out this field with his family name by himself. 
This filled field is transmitted through the proxy to server. 
The personal assistant recognizes that there is a field 
whose value corresponds to the family name of the 
person. So the existing synonym list (e.g. FamilyName, 
surename or name2) is extended by name_2.  

Furthermore the personal assistant includes a function 
which receives and sends new rules and synonyms from 
and to a central server. If for instance the personal 
assistant of user A has identified a new synonym because 
he/she was one of the first users filling out the new form 
of a specific service, users B’s form is already correctly 
filled because of the updated synonym list. 

4.3 Prototype 
Based on the overall architecture we are currently 

developing a corresponding prototype in the context of 
the EU-Project Simplicity [1]. As a first step there will be 
two different  web based services available which can be 
used by a user through a mobile device. The personal 
assistant on the mobile device will try to fill out the 
transmitted forms based on the available information. 

As you can see in Figure 3 our prototype will consist 
of a mobile device (Nokia 6600) and a server (Laptop 
Sony Vaio PCG-Z1XMP).  

Mobile Device
(Nokia 6600)

User Data
(as J2ME 
Records)

Server 
(Sony Vaio PCG-Z1XMP)

Personal Assistant

J2ME / MIDP 2.0 J2SE

Web serverJade Middleware 

Jess-
Application 
(Inference
Engine)

Jade 
Middleware 

Se
rv

ic
e 

A
 (H

TM
L-

ba
se

d)

Se
rv

ic
e 

B
 (H

TM
L-

ba
se

d)

Jade-Agent 
(Load 

balancing 
for Jess)

Proxy

Bluetooth API Bluetooth API

W
eb

 b
ro

w
se

r

Rule base

 
Figure 3. Components of the prototype to evaluate the 

approach for automated form filling on mobile devices. 

We use Java as the implementation language. As our 
platforms we use on the mobile device J2ME (Java 2 
Platform, Micro Edition) and on the server J2SE (Java 2 
Platform, Standard Edition). The communication between 
mobile device and server is done via a Bluetooth 
connection. Based on the Java runtime environments we 
use the middleware Jade (Java Agent Development 
Framework) [29] which runs on J2SE as well as on 
J2ME. So we do not have to concern the special aspects 
of programming applications for mobile devices (e.g. 
asynchronous communication, unreliable connections, 
and limitations of mobile devices) because Jade provides 
an abstraction layer which hides these aspects.  

Furthermore the server will run a web server and the 
two already mentioned web based services. We plan to 
provide as a first step a hotel reservation service and a car 
rental service. 

The user data conforms to a special ontology that is 
currently developed in the Simplicity project and consists 
of different profiles such as user, device, services, etc. For 
the storage of these data we use J2ME records. 

We will use the Jess (Java Expert System Shell) [30] 
as the basis for the implementation of the personal 
assistant. The personal assistant observes all received web 
pages which it gets form the proxy. Based on this, the 



user data and the rule base of the personal assistant try to 
fill in the correct data. Afterwards the personal assistant 
sends the changed web pages and transfers it to the web 
browser. The user can now control the filled data and 
maybe he/she has to correct some of them or has to fill in 
leftover empty fields.  

To reduce the processing power required on the 
mobile device we do not run the interference engine 
locally. We used a function of the Jade middleware which 
can split an agent in a front end and a backend where only 
the front end is running on the mobile device and the 
backend is running on the server. Therefore it is possible 
to migrate the inference engine to the server. The 
corresponding Jade agent is depicted in the server of 
Figure 3. 

In the next step we will use existing mobile services to 
test our approach with this prototype. 

5. Conclusion 
In this paper we presented a conceptual system which 

supports the automatic filling of forms in web based 
mobile services. The basic idea is that there is a personal 
assistant running in the background of the mobile devices 
taking the user data and the content and context of the 
form into account. Based on this information and 
corresponding rules the forms are filled. The user has 
only to control, correct and confirm this pre filled forms. 

6. Acknowledgements 
This work was performed in the context of the 

framework of IST Project Simplicity (Secure, Internet-
able, Mobile Platforms LeadIng CItizens Towards 
simplicitY) funded by the EU. The authors wish to 
express their gratitude to the other members of the 
Simplicity Consortium [1] for valuable discussions. 

We thank our colleagues Paul Holleis and Matthias 
Kranz for contributing interesting ideas and comments to 
the project.  

7. References 
[1] Simplicity Project, http://www.ist-simplicity.org 
 

[2] I. MacKenzie and R. Soukoreff, „Text entry for 
mobile computing: Models and methods, theory and 
practice”, Human-Computer Interaction, 17, 147-198. 
2002. 
 

[3] J. Pierce and H. Mahaney, “Opportunistic Annexing 
for Handheld Devices: Opportunities and Challenges”, 
Human-Computer Interface Consortium, 2004. 
 
[4] M. Silfverberg, I. MacKenzie and P. Korhonen, 
„Predicting Text Entry Speed on Mobile Phones”, 

Proceedings of the SIGCHI conference on Human factors 
in computing systems, The Hague, The Netherlands, 
ISBN 1-58113-216-6, pp. 9-16, 2000. 
 

[5] T. Chusho, K. Fujiwara and K. Minamitani, 
“Automatic Filling in a Form by an Agent for Web 
Applications”, Asia-Pacific Software Engineering 
Conference 2002, IEEE Computer Society, pp.239-247,  
2002. 
 

[6] P. Hallam-Baker, “Client Side Automated Form 
Entry”, W3C Working Draft WD-form-filling-960416 
http://www.w3.org/TR/WD-form-filling.html 
 

[7] J. Barton, T. Kindberg, H. Dai, N. Priyantha and F. 
Al-bin-ali, „Sensor-enhanced Mobile Web Clients: an 
XForms Approach”, Proceedings of the twelfth 
international conference on World Wide Web, ISBN 1-
58113-680-3, Budapest, Hungary, pp. 80-89, 2003. 
 

[8] RoboForm, http://www.roboform.com/ 
 

[9] iOpus Internet Macros, http://www.iopus.com 
 

[10] G. Abowd and A. Dey, “Towards a Better 
Understanding of Context and Context-Awareness”, in: 
Technical Report GIT-GVU-99-22, College of 
Computing, Georgia Institute of Technology, pp. 12, 
1999. 
 

[11] P. Korpipää, J. Mäntyjärvi, J. Kela, H. Keränen and 
E-J Malm, “Managing context information in mobile 
devices”. IEEE Pervasive Computing 2(3):42-51. 2003. 
 

[12] G. Rossi, D. Schwabe and R. Guimar, “Designing 
Personalized Web Applications”, Proceedings of the tenth 
international conference on World Wide Web, Hong 
Kong, ISBN 1-58113-348-0, pp. 275-284, 2001. 
 

[13] D. Billsus, C. Brunk, C. Evans, B. Gladish and M. 
Pazzani, “Adaptive interfaces for ubiquitous web access”, 
Communications of the ACM 45/5, pp. 34-38, 2002. 
 

[14] Z. Fiala, M. Hinz, K. Meißner and F. Wehner, „A 
Component-based Approach for Adaptive, Dynamic Web 
Documents”, Journal of Web Engineering, Vol.2 
No.1&2, pp. 58-73, Rinton Press, September, 2003 
 

[15] L. Suryanarayana and J. Hjelm, “Profiles for the 
situated web”, Proceedings of the eleventh international 
conference on World Wide Web, Honolulu, Hawaii, USA 
ISBN 1-58113-449-5, pp. 200-209, 2002. 
 

[16] C. Efstratiou, A. Friday, N. Davies and K. Cheverst, 
“A Platform Supporting Coordinated Adaptation in 
Mobile Systems”, Proceedings of the 4th {IEEE} 
Workshop on Mobile Computing Systems and            
Applications (WMCSA) 2002, pp 128-137, 2002. 
 



[17] C. Efstratiou, A. Friday, N. Davies and K. Cheverst, 
“Utilising the Event Calculus for Policy Driven 
Adaptation in Mobile Systems”, Proceedings of the 3rd 
International Workshop on Policies for Distributed 
Systems and Networks (POLICY 2002), 2002. 
 
[18] L. Kagal, T. Finin and A. Joshi, “ A Policy Language 
for a Pervasive Computing Environment”, IEEE 4th 
International Workshop on Policies for Distributed 
Systems and Networks,  Lake Como, Italy, pp. 63. 2003. 
 

[19] WAP Forum, http://www.openmobilealliance.org/ 
tech/affiliates/wap/wapindex.html 
 

[20] T-Zones, T-Mobile Germany, http://www.t-
zones.de/de/Getting_started/Wap/50simulator.html 
 

[21] Wap Portal O2 online, wap.o2online.de 
 

[22] E-Plus Germany, www.eplus-imode.de 
 

[23] Booxtra, http://wap.booxtra.de 
 

[24] Getmobile, http://wap.getmobile.de/ 
 

[25] Web service for initial user test 
http://www.rukzio.de/formfilling/ 
 

[26] Microsoft .NET Passport, http://www.passport.net 
 

[27] Will be provided as a Real Video stream if the paper 
is accepted 
 

[28] 3GPP Generic User Profile, Different documents 
under www.3gpp.org 
 

[29] Java Agent Development Framework (JADE) 
http://jade.tilab.com/ 
 

[30] Java Expert System Shell (Jess) 
http://herzberg.ca.sandia.gov/jess/ 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 


