

Abstract— As of today, heterogeneous services, terminals and

networks create a burden of complexity on the shoulders of final

users. Concepts like personalization and ease of use of ICT

(Information and Communication Technologies) services are

fundamental features to unleash the full potential of beyond 3G

systems and paradigms such as ambient intelligence, ubiquitous

connectivity, context-aware services, pervasive computing and

novel access technologies.

The aim of the Simplicity project is to ease the user interaction

with devices, services and functionalities. In more details our

vision is to design and deploy a “framework” able to decouple

user needs and user devices, as well as services deployment and

fruition, from the underlying networking and service support

technologies. With this goals in mind the Simplicity System will

support the effective exploitation and user acceptance of the ICT

facilities. This paper provides a description of the Simplicity

System Architecture.

Index Terms— service personalization, service portability, user

profile, terminal auto-configuration.

I. INTRODUCTION: THE SIMPLICITY APPROACH

The Simplicity (Secure, Internet-able, Mobile Platforms

LeadIng CItizens Towards simplicity) project is a European

Union program, scheduled to run for two years (January 2004 -

Decmber 2005) that includes 11 major European industrial

organizations, network operators, SMEs, research labs and

universities [1].

The strategic goal of Simplicity is to simplify the process of

using current and future “services” providing a user-friendly

solution. More specifically, the project aims to design and

deploy an architecture allowing:

• easy personalization of services to match user

preferences and needs,

• seamless portability of distributed services, applications

and sessions across heterogeneous terminals and devices,

• smooth adaptation of services to available networking

and service support technologies and capabilities.

The personalization concept is based on a user profile

which provides a common underlying information model for

all the elements of the Simplicity architecture. This

representation has been called “Simplicity User Profile”

(SUP), extending the “Generic User Profile” by 3GPP [7]. The

full XML definition of the SUP is included in [8].

 In our view, each user will be provided with a personalized

This work was partly supported by the EU in the framework of the project

“Simplicity” IST-2004-507558

profile, giving access to different services, perhaps using

heterogeneous classes of terminals (see also [2], [3]). The

personalized user profile will allow automatic, transparent

customization and configuration of terminals/devices and

services, uniform mechanisms for recognizing, authenticating,

locating and charging the user, policy-controlled selection of

network interfaces and applications services. Thanks to the

profile, users will also enjoy the automatic selection of

services appropriate to specific locations (e.g. the home,

buildings, public spaces), the automatic adaptation of

information to specific terminal devices and user preferences,

and the easy exploitation of different telecommunications

paradigms and services.

The user profile will be either stored in a so-called

Simplicity Device (SD). Though it seems natural to think of

the SD as a physical device (e.g., an enhanced SIM card, a

Java card, a USB stick, a sensor, etc.), the SD could also be

implemented as a network location or a software agent. In

some case the physical SD could store “pointers” to profile

information residing in the network. If the SD is a physical

device, users could personalize terminals and services by the

simple act of plugging the SD into the chosen terminal.

PDA

Web Pad

Laptop

PC

Entertainment

devices

Printers

Cellular

Radio

Bases

Access

Points

Simplicity

Device

Routers

ADSL access

equipment

Terminals Networks Services

Figure 1: Overall reference scenario

The SD will provide all the information necessary to adapt

services to the characteristics of the terminal, the nature of the

environment and the user’s personal preferences. Figure 1

shows the overall picture of the Simplicity scenario, where the

SD interacts with Terminals, in order to configure and adapt

the Terminals (and the Applications therein contained), the

access to Networks and the access to Services. Control of

personal data, security of information, and user privacy are key

issues for the Simplicity approach.

The Simplicity system also encompasses a Brokerage

The Simplicity System Architecture
N. Blefari Melazzi

(1)
, S. Salsano

(1)
, G. Bartolomeo

(2)
, F. Martire

(2)
, E.Fischer

(3)
, C. Meyer

(3)
,

C. Niedermeier
(3)

, R. Seidl
(3)

, E. Rukzio
(4)

, E. Koutsoloukas
(5)

, J. Papanis
(5)

, I. S. Venieris
(5)

(1) DIE, Univ. of Rome “Tor Vergata”, (2) Radiolabs, Rome, Italy, (3) Siemens, Munich, Germany,

(4) Media Informatics Group,University of Munich, (5) National Technical University of Athens.

Framework. This brokerage level will use policy-based

technologies (e.g. policies for mobility support, Qos, security,

SW downloads) to orchestrate and adapt network capabilities,

taking into account user preferences and terminal

characteristics. Also it must provide adaptation capabilities to

the considered context (location, time, etc) and eventually an

orchestration of events, managing at the same time access of

several users to the same resources, services and location.

In this paper, Section 2 will shortly discuss how “Simplicity

scenarios” from the user perspective have been considered in

the design phase, while Section 3 provides a description of the

specification of the system architecture

II. SIMPLICITY SCENARIOS FROM THE USER PERSPECTIVE

In order to analyze the requirements coming from the user

perspective, the Simplicity project has analyzed a large set of

user scenarios. Generic functions derived from the scenarios

have been considered in the definition of the Simplicity

Architecture, trying to fulfill all the identified requirements.

Due to space constraints the complete scenarios description

and requirement analysis (using UML methodology) can be

found in [4], for more condensed information see also [3], [5].

Just to name one exemplary scenario which describes how

the user can profit from simplified communication spaces we

mention the ‘Mobile Worker and Gaming’ scenario. Here, we

examined in detail how the modern day worker interacts with

his terminals, network technologies, applications, data and

services throughout his business times and private time. Focus

in this scenario was put on how Simplicity can provide a

heterogeneous platform that easily integrates access to all

information the user desires while requiring minimal user

interaction to simplify the overall user experience.

III. SIMPLICITY ARCHITECTURAL ASPECTS

Starting from the requirements coming from the user scenarios,

the design of the architecture has been split in two stages:

“high level architecture” and “detailed architecture”. In the

high level architecture a set of “logical” functional entities has

been identified with no concern on the mapping of these

entities into physical nodes and on the needed communication

mechanisms. The design methodology and the high level

architecture can be found in [6].

In this paper we will focus on the Simplicity “detailed

architecture”. At this level the architecture foresees a number

of software and hardware entities that are part of the

“Simplicity system” and collectively provide Simplicity

services to users. The Simplicity system interacts with other

“external” elements, such as user terminals, applications

running on user terminals, network elements, servers, network

services and so on. An overall picture of the Simplicity system

is represented in Figure 2. The main components of the

Simplicity system are the Simplicity Device, the Terminal

Brokers (TBs), the Simplicity Personal Assistant (SPA), the

Network Brokers (NBs). The interaction of the Simplicity

system with existing (“legacy”) application and services is

depicted, as well as the interaction of the System with external

applications which are designed to exploit the capability of the

system (denoted as “Simplicity enabled 3
rd

 party

applications”).

Network

Broker(s)

Terminal

Broker

Simplicity

Device

Network & Service
side

Terminal
side

Simplicity
Personal

Assistant

Simplicity
enabled

3p Appl.

“Legacy”
applications

“Legacy”
services

Simplicity
enabled
3p Appl.

Figure 2: The Simplicity system components

The role of the Simplicity Device, as discussed above, is to

store user’s profiles, preferences and policies. It also stores

and allows the enforcement of user-personalized mechanisms

to exploit service fruition, to drive automatic adaptation to

terminal capabilities, and to facilitate service adaptation to

various network technologies and related capabilities.

The Terminal Brokers (TBs) manage the interaction

between the information stored in the SD and the terminal in

which the SD is plugged in. These SW modules enable the SD

to perform actions like terminal capability discovery,

adaptation to networking capabilities and to the ambient,

service discovery and usage, adaptation of services to terminal

features and capabilities. TBs cater also for the user interaction

with the overall Simplicity system (including network

technologies and capabilities).

The Simplicity Personal Assistant (SPA) represents the

interface of the Simplicity systems towards the end-user. The

SPA interacts with users via a convenient User Interface,

assisting users towards completing their tasks. Its look,

behavior and actions are strongly adapted to user preferences

and needs. SPA is meant to provide as much support as

possible to the user. The subsystem acts autonomously

whenever it can, requiring only minimal input from the user.

This entity also provides uniform access to the Simplicity

System, and to the services it provides. More specifically the

SPA is involved in many tasks, which include user

authentication, management of user’s preferences and also

application related functionalities like session management,

service subscription, adaptation (personalization) and

invocation.

The Network Brokers (NBs) have the goal to provide

support for service advertisement, discovery and adaptation.

Moreover, they orchestrate service operation among

distributed networked objects, taking into account issues

related to the simultaneous access of several users to the same

resources, services, and locations. They also share/allocate

available resources, and manages value-added networking

functionality, such as service level differentiation and quality

of service, location-context awareness, and mobility support.

3rd Party Applications run on the user terminal and on other

network-side entities. 3rd Party Applications use features

provided by the Simplicity system through a specific interface,

called Simplicity Applications Interface (SAI).

The interfaces between the identified entities (see Figure 2)

must be clearly defined. In particular, three fundamental

interfaces have been addressed: 1) the interface among the

“brokers”, which will be called “Simplicity Broker

Communication” – SBC; 2) the interface between the brokers

and the external applications willing to exploit the system,

called “Simplicity Applications Interface” – SAI; 3) the

interfaces between the Terminal broker and the Simplicity

Device, called “SD Access Interface” – SDAI. For space

constraints we cannot cover in detail the specification of these

interfaces. We will rather discuss the decomposition of the

architecture in “sub-systems” showing which sub-system takes

care of the identified interfaces.

3.1. Detailed architecture

In order to achieve a flexible and modular specification, TBs

and NBs have been de-composed in a set of separate logical

components called “sub-systems” that implement the required

functions. “Reusable” sub-systems implement common

Simplicity functions, while specific subsystems may be defined

to implement specific applications in the Simplicity system.

The interaction between subsystem is defined in terms of

asynchronous events exchange (specified using UML class and

sequence diagrams).

TABLE I

LIST OF BROKER SUB-SYSTEMS

SBC – Simplicity Broker Communication

SAIM – Simplicity Applications Interface Manager

SDAM – Simplicity Device Access Manager

Profile Management

Capability Management

Policy Management

Policy Decision Point

Service Management

Presence

User contracts & pricing

Access Network

SDS-c - Secure Distributed Storage client

Application specific subsystems

The communication between sub-systems that are physically

located in different brokers constitute the “Simplicity Broker

Communication” (SBC). The SBC specifies how the brokers

talk each other in the Simplicity system. Each broker include a

dedicated sub-system that implements the SBC.

Table I shows the list of defined sub-systems, while Figure 3

provides a graphical representation of the Simplicity detailed

architecture which shows the sub-systems and their relation to

the other defined entities. Most of these subsystems are

provided in two versions, one for the terminal broker and one

for the network broker. In the next subsections the features of

the most important sub-systems will be discussed.

Figure 3: Overall picture of Simplicity detailed architecture

3.2. Internal Broker architecture

The internal architecture of the Terminal and Network Brokers

does not need to be subject to “standardization”. Different

implementation are acceptable, given that they comply with

the specification of inter-broker SBC interface. Nevertheless,

the Simplicity project provided a “reference” specification for

the internal architecture of the broker, which has been taken as

input for the implementation of a demonstrator.

The brokers are defined as modular software systems that

enable easy and flexible integration of different components,

called sub-systems, interacting asynchronously through a

central entity called Mediator. The internal architecture of

brokers allows for flexible integration of new functionality and

a minimal impact when already integrated functionality is

removed. The sub-systems are responsible for their own tasks

and need no further knowledge about the rest of the system.

They communicate with one another in an asynchronous event

based scheme, through the Mediator. Each subsystem, upon

instantiation, registers to the Mediator for events that it is

interested to receive, and publishes the events that it produces.

The Mediator is responsible for the filtering, adaptation and

relaying of events between subsystems. It maintains a mapping

of event types to subsystem ids so that it can route events to

their intended recipients. The Mediator may cooperate with a

policy decision engine that may override the normal

dispatching mechanism and re-route events to other targets,

filter certain types of events and reject them or resolve

conflicts that may occur in complex setups.

This approach enables flexible addition and removal of

subsystems, without affecting the rest of the system. It has the

advantage that it allows encapsulation of new functionality

within a Broker, without restricting its pre-existing

functionality. Any subsystem can be plugged into any Broker,

thus providing maximum flexibility for the deployment of

functionalities in the Simplicity system.

A special category of subsystem is the Adaptor subsystem,

which is used to introduce legacy entities into Simplicity.

Adaptors communicate with the rest of the Simplicity system

like an ordinary subsystem and they implement the required

adaptation logic in order to interact with the legacy entity. This

way it is possible to introduce legacy entities into the system

without the need to change their interface or implementation.

Figure 4: Internal Broker Architecture

3.3. SBC

The Simplicity Broker Communication (SBC) mechanism

aims to extend the asynchronous event based intra-broker

communication mechanism, in order to include other brokers

as well. This mechanism acts as a transparent bridge between

two remotely located mediators, handling: (i) the discovery of

any required resources/subsystems on each of the remote

brokers in order to decide what events need to be dispatched

remotely, (ii) the required orchestration between the involved

brokers so that the discovered subsystems will also be

considered when an event is submitted for dispatching, and

(iii) the actual transfer of events, using an appropriate XML

based protocol (e.g. SOAP).

The discovery of required subsystems in a remote broker

follows a “what is missing” approach. In every broker a

mapping between suppliers of events and consumers of events

reveals the event types that cannot be served locally.

M M

SBC SBC

S S

L

Virtual Event Path

Broker orchestration and

event transfer

Listener setup and

managed by the SBC

Generates an event
Event receiver

Dispatches the event

locally to the listener

M: Mediator

S: Subsystem

L: Listener

SBC: Simplicity Broker Communication

Figure 5: SBC mechanism

The involved subsystems, lying at the two edges of the

communication are not aware of the networking acts between

them and operate as if they were attached on the same

Mediator.

In the process of the SBC specification, Simplicity will also

specify the inter-SBC interface as an asynchronous XML

based protocol, called Simplicity Asynchronous Event

Protocol (SAEP). SAEP will describe the structure of the

messages that SBCs exchange, along with the necessary

exchange patterns and bindings with underlying protocols used

as transport mechanism for them (such as SOAP, HTTP). This

is a useful step for opening Simplicity interactions to different

architectures from what has been described here. For most of

its need, Simplicity Broker Communication can reuse existing

protocols and communication paradigms.

3.4. SAIM

One of the principles of the Simplicity System is that it does

not differentiate between native and 3
rd

 party applications. The

applications should not be conscious of the brokerage

framework and event strategies that take place during

operation in order to offer specific services to applications.

Τhis requirement led us to conceive and develop the Simplicity

Application Interface Manager (SAIM) subsystem. The SAIM

allows a 3
rd

 party application to execute on top of the Terminal

Broker and to use the functionalities of Simplicity, but without

being aware of the comprehensive mechanisms of the

Simplicity brokerage framework. The SAIM subsystem must

be registered at the Mediator, and has the functionality to

dispatch and handle events. This subsystem offers 3
rd

 party

applications a consistent interface, the Simplicity Application

Interface (SAI) that makes available the underlying Simplicity

mechanism transparently: SAI offers functionalities related to

user interactions, service subscription, personalization of

application and device, payment, user location information,

and so on. The SAI cloaks the complexity of the middleware

(Mediator, SBC) totally. The SAI interface is also used by the

SPA to interact with the Terminal broker.

3.5. SDAM

The Simplicity Device (SD) is the “key” to the Simplicity

System. Without an SD, users cannot access Simplicity. The

main role of the Simplicity Device is to store the Simplicity

User Profile (SUP), preferences and policies in a secure and

safe way.

The ideal candidate for the SD (“ideal SD”) should have an

unbounded embedded secure and reliable memory space, a

processing capability as high as possible, minimal physical

size and minimum weight. During requirement analysis,

different implementation alternatives have been investigated

(flash memories, Java Card, and Bluetooth phones) but

unfortunately we found that none of them offers all the

aforementioned features at the same time.

Anyway, an ideal SD may be implemented using three

elements: one physical SD, one or more network repository

and parts of the TB. In order to answer to the necessity to

guarantee integrity and confidentiality of the sensitive user’s

information, and to ensure an access to the simplicity system

limited only to authenticated and authorized customers we may

consider various solutions.

Moreover, in the case in which the SUP resides in a network

repository, it is necessary to protect also the transfer of

information from possible attacks and interceptions.

Some available mechanisms that resolve the aforementioned

aspects are:1)Ciphering (symmetric/asymmetric), 2)digital

watermark/ certificates, 3)AKA mechanism, 4)HTTPS

(TLS/SSL), 5)IPsec.

Depending upon which physical SD is employed some

functionality ideally residing on the SD are shifted to a TB

subsystem called Simplicity Device-Access Manager (SDAM).

This subsystem will collect events targeted to the SD and

will translate them into messages of the specific

communication mechanism of the SD implementation.

Adjusting the different SD implementations to the SD-AM

requires the presence of communication controllers which will

interact with the specific communication interfaces of each SD

implementation. The SDAM should provide SUP data

information to requesting subsystems using a standard

language. The use of XML seems to be a unanimous choice;

however this does not prevent the possibility to use other data

format in each specific SD implementation (e.g. binary

format). Therefore, the SDAM is able to convert one or more

specific data format(s) into a standard XML instance

document. The SDAM also provides support for privacy and

controlled disclosure of information. ù

By hiding implementation details on the physical SD, the

SDAM offers more freedom to the Simplicity programmer,

who is able to exploit the same functionalities available from

the ideal SD whatever physical SD is really owned by each

Simplicity user.

Figure 6: Policy Architecture

3.6. Policy Architecture

As already mentioned, one of the key functionalities of the

Simplicity architecture is the adaptation of services,

applications and terminals based on different context data like

user preferences and devices capabilities. To address this, the

Simplicity architecture contains two subsystems, Policy

Decision Point (PDP) and Policy Management that could be

part of the terminal as well as the network. These subsystems

are responsible for the policy-based decision processes and the

management of the different policies. Policies can be seen as

sophisticated IF-THEN – statements which are interpreted by

the PDP. Figure 6 illustrates the relation between the different

subsystems. If an arbitrary subsystem needs information for an

adaptation process it sends a corresponding request to the

PDP. This subsystem requests the policies from the Policy

Management subsystem and the context information from

other subsystems (e.g. context management subsystem,

capability management subsystem, profile management

subsystem) that are needed for the current decision process.

After that, the PDP sends the result back to the subsystem

which asked for the information that was needed for an

adaptation.

To achieve the needed flexibility, context information, the

policies and the adapted services are separated, which makes it

easy to change the context, to modify policies and to integrate

new adaptations into the Simplicity system. Furthermore the

policy architecture is not designed for a specific kind of

adaptation. This allows the integration of arbitrary adaptations

or decisions requested by different subsystems.

When looking on the current issues in the field of policy-

based adaptive systems, the most important problems are

currently conflict detection and resolution, distribution,

complexity and performance. We address these problems

through the usage of modules as well as domain and priority

concepts.

IV. CONCLUSIONS

The Simplicity project addresses a crucial issue for future

systems beyond 3G. The terminals, networks, services and

applications adapt proactively to the user and not vice versa.

This is very important for the acceptance and usage of new

innovative services by the user. We intend to prove the

advantages of this concept and to show its feasibility by

implementing the presented architecture based on a set of

prototypes. A key parameter to judge the outcomes of

Simplicity is the user acceptability and usability of the

Simplicity Device. Proof of this will be shown via a user-

centered approach. This concept can also be instrumental in

opening up new research directions or extensions of current

ones, including e.g. user profile definition and handling, user

tailored applications and API, middleware tools for high layer

re-configurability or dynamic network configuration as a

function of users' context.

REFERENCES

[1] IST Simplicity project: http://www.ist-simplicity.org

[2] N. Blefari-Melazzi, G. Bianchi, G. Ceneri, G. Cortese, S. Kapellaki, K.

Kawamura, C. Noda, S. Salsano, I. S. Venieris: “The Simplicity project:

easing the burden of using complex and heterogeneous ICT devices and

services. Part I: Overall Architecture”, IST Mobile&Wireless

Communications Summit 2004, June 27-30 2004, Lyon, France.

[3] N. Blefari Melazzi et al. “The Simplicity Project: Managing Complexity

in a Diverse ICT World”, in Ambient Intelligence, IOS Press (in press)

[4] Simplicity Deliverable D2101: “Enhanced use cases, requirements and

business models”; http://server.ist-simplicity.org/deliverables.php

[5] R. Seidl, F. Berger, S. Kapellaki, T. Frantti, E. Rukzio, J. Hamard, N.

Blefari Melazzi: “User scenarios for simplified communication spaces”,

IST Mobile&Wireless Communications Summit 2004, June 27-30

2004, Lyon, France.

[6] Simplicity Deliverable D2201: “Initial system architecture

specification”; http://server.ist-simplicity.org/deliverables.php

[7] 3rd Generation Partnership Project. Data Description Method (DDM) -

3GPP Generic User Profile (GUP). Technical specification of Technical

Specification Group Terminals, Version 6.1.0. 2004.Reference example

[8] Simplicity Deliverable D2202: “Final system architecture

specification”; http://server.ist-simplicity.org/deliverables.php

