
T. Magedanz et al.(Eds.): MATA 2005, LNCS 3744, pp. 252 – 262, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Facilitating Context-Awareness Through Hardware
Personalization Devices: The Simplicity Device

J. Papanis, S. Kapellaki, E. Koutsoloukas, N. Dellas, G.N. Prezerakos1,
and I.S. Venieris

Intelligent Communications & Broadband Networks Laboratory,
School of Electrical and Computer Engineering, National Technical University of Athens

{jopapan, sofiak, lefterisk, ndellas, prezerak}@telecom.ntua.gr,
venieris@cs.ntua.gr

Abstract. The paper presents the specification, development and initial per-
formance evaluation of the Simplicity Device (SD), which is one of the key
components of the SIMPLICITY Architecture. The SD is both a portable per-
sonalization device and a hardware Single-Sign-On (SSO) token. It accommo-
dates the Simplicity User Profile (SUP), which contains user context related in-
formation and has been designed according to 3GPP and W3C standards. In co-
operation with a distributed brokerage framework the SD provides the users
with the means to automatically personalize terminals and services according to
their context by the simple act of “plugging” the SD into any SIMPLICITY
compliant user equipment. Within this paper we present the generic SD archi-
tecture which is the basis for different SD implementations and consequently
we focus on a JavaCard SD implementation and its performance evaluation.

1 Introduction

One of the major goals of pervasive computing is to provide highly personalized con-
text-aware services with the least possible user interference. These services usually
require more complex transactions than the traditional client-server model, where the
information and the required resources were conveniently stored centrally at the net-
work side and managed by the service provider alone. Services have evolved towards
a decentralized compound model; resources are distributed throughout the network
but are also located in the user’s environment in the form of embedded devices with
networking capabilities. All these entities must cooperate towards successful service
provision. User related information needs to be retrieved and processed in order for
context to be formed and exploited. Consequently service provision should adapt to
user context.

We present the approach followed by the IST SIMPLICITY project (Secure, Inter-
net-able, Mobile Platforms LeadIng CItizens Towards simplicity) [1]. SIMPLICITY
aims at users of existing as well as emerging services who employ different terminals
(including PCs, PDAs and mobile phones) over wired and wireless networks. The
user should enjoy personalized context aware services with minimal configuration

1 G. N. Prezerakos is also with the Technological Education Institute (TEI) of Piraeus, Dpt. of

Electronic Computing Systems, 250 Thivon Av. & Petrou Ralli, 122 44 Athens, Greece.

 Facilitating Context-Awareness Through Hardware Personalization Devices 253

overhead. SIMPLICITY tackles complexity by combining the following means: (a) A
personalization device with a simple and uniform mechanism for customizing ser-
vices and devices (used for user identification / authentication as well as a means to
store user profiles, preferences and policies) (b) a distributed brokerage framework
that encompasses the various components that constitute an end-user application.

The personalization device proposed by the SIMPLICITY, aptly named Simplicity
Device, is a portable and physically robust token that the user can carry everywhere
and anytime. It helps the user interact with terminal devices and services. Users can
personalize terminals and services by the simple act of “plugging” their SD into the
chosen terminal. Depending on the different capabilities of the SD implementation, it
can store the user profiles, user preferences, user policies and terminal settings and/or
be a pointer to information stored elsewhere.

Before delving into the details of the SD, the following section gives an overview
of the end-to-end SIMPLICITY architecture.

2 The Simplicity Architecture

SIMPLICITY is a distributed system that delivers advanced personalization for users,
through context awareness and policy based adaptation. Overall, SIMPLICITY intro-
duces the novel idea of a personalization device, the Simplicity Device (SD) which is
supported by a distributed brokerage framework [2].

The central entity in this framework is the Simplicity Broker, a compound software
entity that consists of individual subsystems delivering Simplicity services to users.
Different broker setups have been specified in SIMPLICITY, most notably the Ter-
minal Broker (TB) which resides in user terminal equipment and is responsible to
deliver personalization of the terminal environment for the user, the Network Broker
(NB) which resides at the network side and mediates between the Terminal Broker
and network side services, and the Service Broker (SB) which hosts interfaces, APIs
and adaptors for 3rd party Simplicity compliant services. The user’s interface to Sim-
plicity is the Simplicity Personal Assistant (SPA), an entity that manages the graphi-
cal user interfaces, takes actions on behalf of the user and orchestrates the brokerage
framework through the Terminal Broker. Existing hardware and software outside
Simplicity, collectively labeled “legacy entities” (LE) integrates with Simplicity
through the use of special adaptor interfaces.

Simplicity brokers are modular architectural entities, consisted of loosely coupled
software entities called Subsystems. Subsystems are autonomous entities that encap-
sulate Simplicity specific functionality; they cooperate through the exchange of mes-
sages in an asynchronous event-based fashion. Subsystems are attached in a central
lightweight entity, the Mediator, which is responsible for filtering messages and de-
livering them to their intended recipients. A special kind of subsystem, the Adaptor
subsystem is the intermediate entity between legacy entities and Simplicity. The Sim-
plicity Broker Communication (SBC) subsystem is another special subsystem that
fulfils the task of broker discovery and communication with remotely attached sub-
systems. Finally, the Simplicity Device Access Manager (SDAM) is a special case of
an adaptor subsystem that provides interfaces for different SD realizations and ab-
stracts the different realizations to the rest of the Simplicity system.

Figure 1 illustrates the internal broker architecture and lists the aforementioned
core subsystems.

254 J. Papanis et al.

M

SBC

S

A

SD
AM

S

Applic
ation

Applic
ation

LE

Simplcity
Device

M: Mediator
S: Subsystem
SBC: Simplicity Broker Communication
A: Adaptor
SDAM: SD Access Manager

Broker

Fig. 1. Internal Broker Architecture

The focus in the following sections will be on the Simplicity Device implementa-
tion and its interaction with the Simplicity Device Access Manager.

3 Simplicity Device Functionality

Being the innovative part of the Simplicity vision, the Simplicity Device has a promi-
nent role in the Simplicity Architecture. The SD is seen as something more than a
secure storage token; it is a personalization enabler that inflicts on users’ computing
and networking environment a certain degree of mobility. A smart and personalized
environment follows the user anywhere that a Simplicity compliant terminal can
be found.

In order to realize this task, the Simplicity Device makes use of a structured user
profile that contains personalization information about the user himself, about the
available services, the network connectivity options, the device capabilities and the
terminal environment preferences. The Simplicity User Profile (SUP) was modeled
according to the methodology proposed by 3GPP for Generic User Profile (GUP) [3]
and device related profiles where developed based on the W3C Composite Capabili-
ties/Preferences Profile framework (CC/PP) [4]. SUP is stored on a Simplicity Device
realization and the device implements store, retrieve and verify procedures while
operating on the SUP, thus ensuring data integrity as well as placing access on SUP
under the device’s strict security control. Depending on the different capabilities of
the device implementation, it can store the user profiles, user preferences, user poli-
cies and terminal settings locally and/or be a pointer to information stored at specific
nodes in the network. Additional information about the relation between SUP, the
GUP and CC/PP can be found at [5].

Besides the personalization features, the SD provides single-sign-on (SSO) func-
tionality to the user. Seamless service provision requires that users entering a service
provisioning framework are identified only once and consequently they can use ser-
vices based on their access rights and personal preferences. Several SSO solutions
have been proposed [6], [7]. The most publicized frameworks are the Microsoft’s
Passport [8] and the Liberty Alliance Project [9], both proposing that the user’s pro-
file is stored at a central point within the network. The innovative feature, however,
that Simplicity projects, is the use of a hardware SSO token, the SD, which is both

 Facilitating Context-Awareness Through Hardware Personalization Devices 255

more secure and more practical to use, since the steps required are to plug in the de-
vice and provide a PIN number to the Simplicity Personal Assistant.

Personalization and the single-sign-on function are the two key features that the
Simplicity Device contributes to the Simplicity vision. The following section investi-
gates the requirements that arise from these features and describes the architecture
and implementation of a JavaCard based Simplicity Device.

4 The Simplicity Device Architecture and Implementation

Summarizing the facts from the previous section, an ideal SD should meet the follow-
ing requirements:

• Portability (small size, lightweight, low power consumption)

• Plug & play & unplug (bootstrap procedure, insert and removal notification)

• Computational Power (profile management, security algorithms)

• Data Storage

• Security (Authentication\Encryption)

• Ease of programming

Unfortunately some of the above requirements are conflicting. But if we had to
choose one of them, the most important is portability with an emphasis on small-sized
devices, which are resource-constrained. Thus the personalization device should be
offered in different implementations that integrate with currently available and emerg-
ing terminals with minimum effort. Three main SD types can be defined taking also
into account the fact that the functionality of the SD has to be implemented on re-
source constrained devices:

• Storage and processing devices offering a rich set of functions and facilities,
exploiting the storage and processing capabilities of the device.

• Pure storage devices with a large storage capability allowing the storage of
significant volumes of data

• Virtual devices consist of a software solution based on a network infra
structure

BT
Phone

Response
APDU

Command
APDU

Storage /
Authentication

Applet

JCRE

Installer

JavaCard

BlueTooth Controller

OpenCard
FrameWork
(JavaCard
Controller)

SBC

Events to/
from

Mediator

Other
Brokers

TERMINAL
BROKER

Sub
system

2

Sub
system

n

Sub
system

1

Sub
system

3

…

Authenti
cation

Storage

Interface

Commu
nication

Service

S
D

-A
M

 S
ub

sy
st

em

Fig. 2. Simplicity Device Architecture

256 J. Papanis et al.

Given the above options the SIMPLICITY project chose to implement a JavaCard
[110] based SD and a legacy SIM card combined with Bluetooth [11] mobile phone
based SD. Both of these implementations are portable, can easily connect with a wide
selection of terminals (JavaCard uses the USB interface and the SIM realization uses
the wide spread Bluetooth protocol) and also offer some processing power and stor-
age space. In order to overcome the capacity limitations posed by the SD hardware, a
part of the SD software entities is located in the terminal and a part in the physical
SD. Figure 2 contains the main blocks of the SD and terminal architecture.

In the following section the paper focuses mainly on the JavaCard / USB SD im-
plementation which was specified and developed by our group.

4.1 SD Terminal Part

Every terminal subsystem should be able to cooperate with any SD type. For this
reason a special subsystem called the SD Access Manager (SDAM) was created
which:

• provides uniform interface for all classes of SD implementations towards the
terminal broker

• is responsible to provide access to functionality originally assigned to the per-
sonalization device, even if this functionality is provided by some other
component, due to restrictions of the specific personalization device imple-
mentation.

SDAM’s API supports both types of personalization devices (JavaCard & Blue-
tooth phone). The terminal broker subsystems should not bear the burden of distin-
guishing to which type a specific SD implementation belongs to. Any functionality
that is not directly supported by a specific SD implementation is provided by the
SDAM. In order to achieve this, the SDAM consists of a common part and specific
entities, called Controllers, for each implementation. The common part is split into
five managers, which are described in the following paragraphs.

The Authentication Manager is responsible for authentication and security issues
regarding the SD. The tasks include authentication of the user towards the SD (per-
formed by entering a Personal Identifier Number (PIN) code) and authentication of
the SD towards the network (in order to access the Simplicity services). Additionally
specific 3rd party services and applications that may try to access and possibly modify
data stored in the SD should have the proper access rights. The Storage Manager
component is responsible for the management of the data stored in the physical SD. It
allows accessing the contents of the SD by implementing a basic file-system, provid-
ing file-system operations like read, write, delete and update. The Interface Manager
is responsible for handling the Simplicity events coming from the Mediator, forward-
ing them to the corresponding components and also encapsulating the responses from
the components into Simplicity events that are transmitted back to the Mediator. For
example a request such as “get user’s billing preferences” will be interpreted into
downloading a specific part from the SUP. The Interface Manager is also involved in
the bootstrapping procedure of the SD. The Communication Manager component is
another vital component for the proper function of the SDAM. The most important
services are presence detection of a connected SD, handling of status changes

 Facilitating Context-Awareness Through Hardware Personalization Devices 257

(insertion and removal), discovering of SD capabilities and finally instantiation of the
respective Controller. Another responsibility is the discovery of any available online
data storage that may hold SD data and then acting as a proxy towards it. Finally, the
Service Manager component is offering a collection of services to other components,
which focus on improving the overall speed - performance and security of the subsys-
tem. The available services include caching profile data from the physical SD, encod-
ing, decoding and encryption of data and a finally maintaining a permission
access table.

The JavaCard Controller is a high level interface, which resides in the terminal part
and is responsible for hiding the complexity of the JavaCard implementations from
the SDAM. Therefore terminal software developers are not concerned with the inter-
nal organization of the JavaCard and its associated concepts such as Application Pro-
tocol Data Units (APDUs), JavaCard Applets, Application Identifiers (AID) etc. In
order to achieve this we followed the OpenCard Framework (OCF) [12], which com-
municates via appropriate drivers with the programs (applets) running in the JavaCard
SD through the USB port. By using the OCF, we avoid making vendor specific soft-
ware, i.e. the terminal side becomes rather versatile and should work with smart cards
from numerous vendors. When the JavaCard Controller receives a request from the
SDAM, it forms a suitable APDU and passes it to the OCF that forwards it to the
physical JavaCard via USB. When it receives the response from the JavaCard, it de-
composes the APDU(s) and forwards the valuable information to the SDAM. The
complexity of the process is alleviated by the Controller, for example when writing a
file to the JavaCard, the current implementation of the Controller has to split the file
in segments that fit in the APDU’s payload size and also maintain and update a map-
ping between files (user profile, preferences) and storage positions in the memory of
the card.

4.2 SD Physical Part

Multifunctional smart cards based on JavaCard technology can be implemented in
two different ways. The first and probably most obvious is to create a separate applet
for each command. This method relies a lot on the card issuers to implement their
cards correctly and with a decent security scheme where necessary. A major draw-
back is, that the various applets know nothing of each other, so there's a strong need
for the applets to implement certain interfaces, in order to perform inter-applet com-
munication. The inter-applet communication should be considered a necessity, as the
applets will share objects like PIN and SUP. Furthermore, the procedure of uploading
and installing an applet onto a card is proprietary and tedious. Another strategy which
is the one used in our implementation is to implement only a single applet and let that
applet control everything. The applet handles creation and modification of the data
and can be reached through OCF applications, which makes it easy to deliver a well-
defined interface to any developer.

The physical mapping on a JavaCard foresees the use of memory locations re-
served inside the context of a JavaCard applet. These memory locations are allocated
by means of a memory buffer constituted by one or more byte array (depending on the
memory constraints of the card). The communication between a device equipped with
a smart card reader (PC, PDA, Phone, etc.) and the JavaCard is based on the APDU

258 J. Papanis et al.

protocol mapped into interface primitives. ISO 7816-4 [13] defines the APDU proto-
col as an application-level protocol between a smart card and an application on a
suited device. The first APDU is addressed to the installer applet of the JavaCard,
which is provided by the vendor by default. This command selects the suitable applet
for the operation we need to perform. After selecting the applet, all following APDUs
are directed to that applet and processed by its process method, until a deselect com-
mand is issued or another applet is selected.

A storage/authorization applet realizes a portable data memory with standard
ISO/IEC 7816-4 commands. In order to read, write or delete data, the user has to au-
thenticate using the PIN verification, which is stored in the card. Inside the data objects
are organized in ASN.1 BER TLV coded data objects. Every data object has its own tag
and length, which are used in the APDUs for read and write. The applet was developed
on the GemXplore Developer environment which includes an Integrated Development
Environment bundled with JavaCard 2.1 compliant smart-cards [14]. Figure 3 displays
the code that is executed by the Controller during the authentication.

Fig. 3. Authentication method at the Controller

First, a string password is converted into bytes (JavaCard has no String) and a
proper request Apdu is formed by appending APDU CLASS, INS, lengths and pay-
load (password). Consequently, the card is being contacted, the Apdu is sent and the
response is read (0x9000 is the OK code).

5 Performance Evaluation of the JavaCard SD

The objective of our measurements is to obtain information concerning the time
needed to read and write data from and to the memory of the JavaCard. The meas-
urements concern the reading and writing of a number of raw data with length varying
from 1 to 10000 Bytes. More specifically we obtained 10 measurements of 1, 15, 50,
100, 200, 300, 500, 1000, 5000 and 10000 Bytes with a minimum of 100 samples per
measurement. In order to measure the times we have used the standard method

public boolean activateSD(String pass)
throws AuthenticationException {

String[] passp = pass.split(" ");
byte[] Pinn = new byte[passp.length];
for(int i=0;i<passp.length;i++)

Pinn[i] = Byte.parseByte(passp[i]);
ResponseAPDU myResponse = null;
byte bZero = (byte)0x00;
byte verify_position = (byte)0x01;
CommandAPDU request =

new CommandAPDU(5+Pinn.length);
request.setLength(0);
request.append(CLASS);

request.append(VERIFY_INS);
request.append(bZero);
request.append(verify_position);
request.append((byte)Pinn.length);
for(int i=0; i<Pinn.length; i++)

request.append(Pinn[i]);
card.beginMutex();
myResponse =

sdjCardProxy.send(request);
if (myResponse.sw() == 0x9000)

return true;
else return false;
card.endMutex();

}

 Facilitating Context-Awareness Through Hardware Personalization Devices 259

System.currentTimeMillis() supplied from the Java Core (we used is JRE 1.4.2_01-
b05 for our measurements). This method returns the current time in milliseconds,
which is precise enough for our measurements.

The input Bytes were read from files with appropriate sizes (1 Byte to 10KBytes –
the size of the files was actual Byte count, not the size these files occupy on disk). We
measured the time needed to format the APDUs (set memory position to read or write
data and apply data in case of write), send them and receive response from the card
(data included also in case of read).

The JavaCard that we used for our implementation and measurements is the
GemXplore Xpresso v3.2 from GemPlus, which comes together with a USB Card
Reader. The PC which was connected to the card was an Intel Pentium III 1.8 MHz
with 512 MBs of RAM. Finally the USB port of the PC is version 1.1. The measured
mean times for varying-length bulk data read and write operations are presented in
Table 1.

Table 1. JavaCard-based SD Measurements

Bytes Read time (ms) Write time (ms)
1 20 33
15 20 33
50 20 33
100 20 33
200 40 66
300 60 100
500 82 134
1000 167 273
5000 1010 1542
10000 2465 3523

20 20 20 20 40 60 82 167

1010

2465

33 33 33 33 66 100 134 273

1542

3523

0

500

1000

1500

2000

2500

3000

3500

4000

1 15 50 100 200 300 500 1000 5000 10000

Read Time (ms)

Write Time (ms)

Fig. 4. Read and Write times in ms

Figure 4 shows a graphic representation of the measurements. One can notice that
the time needed for reading is always somewhat less than the time needed for writing,
which is something we expected because data are read from / written to EEPROM
memory and the writing EEPROM operations are slower that the reading ones.

260 J. Papanis et al.

Our specific implementation is another reason, since everyone can read from the card
but in order to write the applet checks if the user is authorized.

In figures 5 and 6 we present results for different numbers of APDUs. Figure 6
shows a detail of Figure 5 from the first APDU till the eighth. One interesting obser-
vation is that for few APDUs (in our case the first 8) the measured times are multiples
of the time required for one APDU. For example, if one APDU requires 20ms for
reading and 33ms for writing, 8 APDUs require 167ms for reading, which is almost
equal to 8 x 20 (160ms) and 273ms for writing, which is almost equal to 8 x 33
(264ms). For larger numbers of APDU this linear relationship no longer applies. An
average SUP will be around 5 to 10 KBytes long. Our measurements suggest that
writing/reading an average SUP to/from the JavaCard SD will require just a few sec-
onds (2.5 for reading and 3.5 at most for writing). Reading/writing specific data (e.g.
a username – 50 Bytes will just take 20/33 ms).

Read/Write Time

20 40 6
0 82 16

7

1
01

0

24
65

33 66 10
0

1
34 2

73

1
54

2

35
23

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

APDUs

m
ill

is
ec

o
n

d
s

Read Time (ms)

Write Time (ms)

Fig. 5. Read and Write times/APDUs

20

40

60

82

167

33

66

100

134

273

0

50

100

150

200

250

300

0 1 2 3 4 5 6 7 8 9

APDUs

m
ill

is
ec

o
n

d
s

Read Time (ms)

Write Time (ms)

Fig. 6. Read and Write for 1 to 8 APDUs

In the future we intend to repeat these measurements on the final version of the
JavaCard SD, which will provide optimized exchange of messages and maybe even a
compression option for data stored in the memory of the SD. Since the data is in text
format the compression will reduce the size significantly. Thus, we expect that the
final version will offer significant performance enhancements.

 Facilitating Context-Awareness Through Hardware Personalization Devices 261

6 Conclusions and Future Work

The design, implementation and initial performance evaluation of a JavaCard based
SD, in the framework of the SIMPLICITY Architecture, has been extensively de-
scribed within this paper. This personalization device with the usage of the SUP and
the support of a distributed brokerage framework provides the users with the means to
enjoy simplified, personalized and automated procedures for the usage of different
terminals and services.

Ongoing work in SIMPLICITY aims at the integration of a number of applications
to a fully working demonstrator. Depending on the application, a variety of terminals
(laptops, PDAs, mobile phones) will be used via wireline and wireless connections
combined with the different SD implementations. While the demonstrator will pro-
vide proof-of-concept of the SIMPLICITY architecture and the SD concept, on the
other hand it is not a sufficient means for thoroughly evaluating the performance of
the overall SIMPLICITY System as well as the SD part. For this reason, we are cur-
rently working on appropriate performance models (analytical and simulation-based)
that will produce more detailed results and give a more pragmatic insight of the sys-
tem’s real operation. Also comparisons of the different SD implementations are in-
cluded in future steps.

Acknowledgement

The ideas that are described in this paper originate from the ongoing work in the Sim-
plicity project, but most of them represent the personal elaboration of the authors. The
authors wish to express their gratitude to the people working in the Simplicity
Consortium.

References

1. SIMPLICITY Project, http://www.ist-simplicity.org
2. N. Blefari Melazzi, S. Salsano, G. Bartolomeo, F. Martire, E.Fischer, C. Meyer, C. Nied-

ermeier, R. Seidl, E. Rukzio, E. Koutsoloukas, J. Papanis, I. S. Venieris: "The Simplicity
System Architecture", to appear in the Proceedings of the 14th IST Summit, 19-23 June
2005, Dresden, Germany.

3. GPP TS 23.240, “3GPP Generic User Profile (GUP) requirements; Architecture
(Stage 2)”

4. W3C Recommendation 15 January 2004, “Composite Capability/Preference Profiles
(CC/PP): Structure and Vocabularies 1.0”

5. E. Rukzio, G. N. Prezerakos, G. Cortese, E. Koutsoloukas, S. Kapellaki. "Context for Sim-
plicity: A Basis for Context-aware Systems Based on the 3GPP Generic User Profile", In-
ternational Conference on Computational Intelligence (ICCI 2004), pp. 466-469 ,17th-19th
December 2004, Istanbul, Turkey

6. J. Futagawa, “Integrating Network Services of Windows and UNIX for Single Sign-On”,
Proceedings of the 2004 International Conference on Cyberworlds (CW'04), pp. 323-328,
November 2004, Tokyo, Japan

262 J. Papanis et al.

7. G. Zhao, D. Zheng, K. Chen,“ Design of Single Sign-On“, Proceedings of the E-
Commerce Technology for Dynamic E-Business, IEEE International Conference on (CEC-
East'04), pp. 253-256, September 2004, Beijing, China

8. Microsoft Corporation, “.NET Passport: Balanced Authentication Solutions”.
http://www.microsoft.com/net/services/passport/balanced.asp

9. Liberty Alliance Project, http://www.projectliberty.org/
10. Java Card technology specification available at

http://java.sun.com/products/javacard/index.jsp
11. Bluetooth Official site, https://www.bluetooth.org/
12. OpenCard Framework web site, http://www.opencard.org/
13. ISO/IEC 7816-4:1995 Command set for microprocessor cards.
14. GemXplore Developer, http://www.gemplus.com/products/gemxplore_developer/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

